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ABSTRACT

This report discusses a new approach to the specification of properties of multiagent
environments and the genmeration of plans for such domains. The ideas presented
elaborate previous work on a formal, behavioral model of concurrent action, called
GEM (the Group Element Model). By combining the GEM specification formalism
with artificial intelligence techniques for planning, we have devised a framework that
seems promising in several respects. First, instead of ad hoc planning techniques, we
are utilizing a formal concurrency model as a basis for planning. Secondly, the model
encourages the description of domain properties in terms of behavioral constraints,
rather than using more traditional state predicate approaches. Behavioral descriptions,
which emphasize the causal, temporal, and simultaneity relationships among actions,
are particularly suited to describing the complex properties of multiagent domains.
Finally, we present an initial proposal for a planner based on behavioral forms of
representation. Given a set of constraints describing a problem domain, the proposed
planner generates plans through a process of incremental constraint satisfaction.
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1 Introduction

The real world is full of paralle! activity. Groups of people and machines are constantly
cooperating and interacting in the performance of complex tasks. Unfortunately, hu-
mans cannot understand or plan parallel activities as easily as they might like; it is
difficult to forsee the many (potentially harmful) interactions and interleavings that
could oceur. Computers, however, are uniquely suited to this type of complex reason-
ing. A representation of concurrency that is intuitively comprehensible to humans as
well as computationally tractable could thus greatly enhance our ahility to deal with
the complexities of multiagent worlds.

This paper is devoted to describing a new approach to representing the proper-
ties of concurrent, multiagent domains. The approach is based on GEM (ithe Group
Element Model}, a model of concurrency which emphasizes (1) the aclions within a
domain and (2) the constraints on the temporal, causal, simultaneity, and spatial re-
lalionships among those actions [22,23]. We call this approach bhehavioral because it
stresses agents and their actions, rather than the state of the envirommment in which the
agenls operate. Most specification techniques for planning have heen state-based; that
is, they describe a domain in terms of a set of state predicates, and the actions of a
domain in terms of their effects on these predicates. This paper atlempis to show how
behavioral descriptions are more suited to expressing many of the complex properties
of multiagent domains, while still being able to convey the descriptive power of state
predicate approaches.

Because our model is able to capture the causal, temporal, simultaneity, and in some
sense, spatial aspects of real-world domains, the work described herein also represents
contributions in the area of knowledge representation and naive physics. While the
primary emphasis of this paper is specification for purposes of plan synthesis, the close
relationship between our work and that of Allen, Hayes, McDermott, Shoham and
Dean, and others should not be overlooked [1,2,17,28,37]. We plan to write a follow-
up lo this report in which we shall compare our specification formalism with other
rescarch on the representation of time and action.

Towards the end of this paper we offer some preliminary ideas on how to use be-
havioral specifications as the basis for a behavioral planning technique. In fact, the
ideas presented are themselves the basis of a long-term research program in multia-
gent planning currently under way. The planning system proposed generates plans by
incrementally imposing the set of behavioral constrainis that constitute the properties
and requirements of a given domain.



We expect this planning methodology to break new ground in several respects:
the use of a formal and general model of concurrent action as a basis for planning,
instead of ad hoc planuing techniques; the integration of behavioral and state-based
approaches Lo domain description and plan generation; and the investigation of some
new planning techniques and heuristics, including constraint ordering and run-time
constratnt satisfaction. A long-term goal is to build a graphical user interface for our
behavioral planning environment. This interface will serve as a velicle of explana-
tion and interaction with humans during the planning process, as well as a means of
visualizing plan simulation and execution.

2 Background

In recent years, parallelism has been a topic of extensive research in more traditional
provinces of computer science: computer architecture, data base systems, and op-
crating systems. Automatic plan generation for multiagent domains has received less
attention; morcover, very little of that work has utilized the theoretical results achieved
in the foregoing areas. One notable exception is Georgefl’s work on integrating and
synchronizing multiple single-agent plans [13], which uses Owicki and Gries’s technique
for assuring freedom from interference [31]. Stuart has implemented Georgefl’s scheme
[41], by employing Manna and Wolper’s algorithms for synthesizing a concurrent pro-
gram from temporal-logic specifications [25]. While the work described in this paper
is also based on previous work in concurrency theory, it differs from Georgell’s and
Stuart’s in several respects. While their representation does make use of temporal
constraints on aclion orderings, it is still primarily rooted in a state-based framework.
GIEM's behavioral representation is also much richer - {or instance, in its use of causal,
simultaneily, and structural relationships, as well as reasoning over histories. In addi-
tion, our proposed GEM planning technique will generate integrated multiagent plans,
rather than construct a synchronized plan from already generated subplans.

In our attempt to apply our GEM-based representation to planning, we hope to
utilize many of the techniques developed by past planning eflorts. Of the existing plan-
ners that influence our work (i.e., planners that produce partially ordered instead of
sequential plans), NOAH is probably the most significant [35]. Descendants of NOAH
include SIPE [45], NONLIN [42] and [43}, and DEVISER [44], each of which improves
upon NOAH by including such things as limited backtracking, plan justification or ra-
tionalization, and durational reasoning. A significant diflerence between these planners
and our own will be our starting point: a mathematical model of concurrent action



(called G'EM [22]), rather than a set of ad hoc planning techniques. We expect this will
result in a more elegant and conceptually uniform planning method. For example, one
technique used by NONLIN emerges naturally. GEM explicitly represents the causal
relationships among actions in a plan. If we couple these causal relationships with the
constraints that generated them, we obtain the type of information found in NON-
LIN’s “goal structures” [43], namely, a record explicating the causal interrelationship
of actions within a plan.

Related to our work, but with a slightly different emphasis, are ongoing investi-
gations into mutual belief: how to represent and manipulate the beliefs of multiple
agents about one another [19,29]. Researchers working on commonsense reasoning
and natural-language understanding ([4,9,12,17,28,34]) have also found it necessary to
represent the knowledge of concurrently operating agents about one another. This is
sometimes called distributed Al it i1s concerned with sets of autonomous agents. Such
agents may have incomplete knowledge about one another and may be neither cooper-
ative nor benevolent. Other research in distributed Al is less concerned with modeling
mutual belief but focuses on the problem of decentralizing plan synthesis [10,24].

The work described in this paper differs from distributed Al in that it assumes a
set of cooperative agents. In the case of full pre-planning, each of these agents will
accept a single overall plan and exeeute its portion therof. Such a plan is generated
by a centralized multiagent planner that considers all the possible behaviors of each
individual agent. An assumplion of agent cooperation is clearly relevant in many
domains, especially those in which agents are trying to achieve a common goal. For
example, a set of robots trying to assemble a car clearly fits this model. So does the
problem of constructing a general, coordinated work plan for a large organization.
Although planning under assumptions of agent cooperation is obviously simpler than
planning in noncooperative domains, it is a problem that has by no means been solved.

Several other theoretical models and representations for planning have been pro-
posed besides GEM. Most of these models have represented domain actions as atomic
cvents, and the passage of time as a sequence of states, In some cases, the world model
employed has allowed only one action at a time to occur [11,27). In others, actions
have been partially ordered but are still considered to be atomic [35,42]. Yet another
approach has been taken by Allen and Koomen, Shoham, and Cheeseman {2,3,7,36].
They model actions and/or predicates as intervals and describe domain properties in
terms of interval-ordering constraints.

Our formalism follows the more traditional approach of modeling actions as atomic
events. This is not to say that we consider action occurrences to be instantaneous, but



rather that they are logically atomic — action duration is not represented explicitly.
The advantages of action intervals are not lost however; an action A occurring over
an interval can be modeled, for instance, by describing it with two atomic events,
representing the beginning and end of A. Because our formalism also allows for the
simullancous occurrence of actions, all of the possible interval relationships among
actions (or even predicates) used in the work cited above can be modeled. We discuss
the representation of intervals within GEM in Section 5.3.

As mentioned earlier, our work also stands out in its explicit representation of
the causal relationships among actions. Causal theories have long been studied by
philosophers. They have recently appeared in work on knowledge representation and
naive physics [2,17,28,37], as well as in GEM. Our representation of causal relationships
is similar to that used by Shoham and Dean [37].

As in previous work [3,36], our model also makes use of temporal logic - a logic that
enables reasoning about time. By taking advantage of the descriptive power of tempo-
ral logic, we can easily describe goals, preconditions, or any other domain constraint
in Lerms of behavior patterns over time, rather than as single-state expressions. Tem-
poral logic has received much attention in most recent work on multiagent planning
and domain representation. This is not surprising; both linear and branching-time
temporal logics have long been used for concurrent program specification, verification,
and synthesis [8,22,25,32]. A recent workshop on concurrency and planning! focused
on the potential crossover between traditional concurrency theory and Al. It under-
scored the prospective benefits to Al if researchers took advantage of temporal logics
and concurrency specification techniques. In light of GEM’s history as a tool for con-
currency specification and verification, the work described in this paper is precisely
such an attempt.

!The 1984 Concurrency/Planning Workshop at Monterey Dunes, sponsored by the Center for the
Study of Language and Information at Stanford and AAAL



3 Domain Description: State-Based versus Behavioral

In most planning systems, a domain is described by a set of state predicates and robots
(agents) are viewed as state transformers - i.e., their actions are described in terms
of the way they modify this set of predicates. In this context, the goal of a planning
system is to transform an initial state description into a goal state description by
concatenating actions that manipulate state predicates in an appropriate fashion.

For example, a blocks world consisting of a table, a set of blocks, and robots, might
be described in terms of predicates such as On{Block1, Block?), HandEmpty(Robot1).
Holding{Robot2. Block3). Clear(Block1). Actions of the domain are described in terms
of the way they affect these predicates. For instance, an action by Robotl of form
PickUp({Block2) might cause the predicate Holding{Robot1, Block2) to be added to the
state description, and HandEmpty(Robot1) to be deleted. Given this type of domain
description, actions are inserted into a plan because of their effect on world state,
rather than because of some explicitly required relationship among actions. Some of
the advantages of this approach are its explicit provision of action preconditions, the
encoding of world state into predicate form, and its straightforward mapping onto an
implementation.

Unfortunately, strictly state-based approaches to domain description can be awk-
ward for describing behavioral properties —i.e., those that entail complicated causal and
temporal relationships among actions. Priority requirements, for example, fall into this
category; they restrict future relationships among actions (for example, the order in
which a service is performed) based on past relationships (the order in which requests
for service were registered). Other behavioral properties include simultaneity and such
synchronization properties as mutual ezclusion.

While most state-based specification frameworks cannot specify simultaneity re-
quirements, they can describe behavioral properties like priority by encoding them in
terms of state-predicate manipulations. A key limitation of this approach is that it
is tndirect; hnposing a simple behavioral requirement sometimes involves complex ma-
nipulation of predicates. Moreover, the description of a property may be distributed
among the various action specifications that manipulate relevant predicates, rather
than be stated as a single constraint or rule. This leaves the domain deseriber prone
to error and makes system maintenance and debugging more difficult. In an attempt to
obtain reasonable performance, successful planners have also had to limit the possible
forms of state manipulation allowed. These limitations restrict the kinds of domain
properiies that can be expressed.



One way to deal with this problem is to adopt a new point of view: although it may
be useful Lo describe aclions as state transformers, we should also have the capability
of describing relationships among actions divectly, rather than indirectly through state
predicates. Such descriptions take the form of explicit restrictions or constraints on the
permitted temporal and causal relationships among actions. Given this formulation,
planning may be viewed as a process of incremental constraint satisfaction. The goal
of such a planning system is to synthesize a plan {a partial ordering of actions) that
transforms some initial configuration of actions mnto some final goal configuration, such
thal every execution of the plan satisfies all of the domain’s constraints.

The basis for the types of constraint descriptions we will be using is GIEM, the
behavioral model of concurrent action mentioned earlier [22,23]. Behavioral models of
execution such as GEM have proved to be natural vehicles for expressing and analyz-
ing properties of computational concurrency [16,18,20,21,23]. GEM, in particular, has
been used quite successfully for specifying several concurrency problems and language
primitives, as well as verifying concurrent programs. Its utility is due in part to its use
of temporal-logic operators over sequences of histories, i.e., complete records of past
behavior. The GEM specification language also includes a hierarchical, parameterized-
type facility, thus making it possible Lo build new specifications as refinements of old
oncs. Another useful part of the language is a mechanism for describing structural re-
lationships among actions and the agents that perform them, and for relating structure

to constraiis on belhavior.

While our primary goal is to explore the power and tractability of behavioral meth-
ods of specification, it is also our intent to investigate how traditional uses of state
predicates can be tntegrated within GIEM’s behavioral framework. We will describe the
GEM model in greater detail in Section 4 and its integration with state-based methods
in Section 5.2.

Let’s continue to contrast traditional state-based domain descriptions with the
behavioral descriptions GEM uses by considering a few examples. Suppose we are
specifying a “diving” domain consisting of a diver, a diving board, and water. To
perform a certain kind of dive, a diver might go through a sequence of actions such
as Jump, Somersauft, Twist, StraightenBody. Although divers may not know abont, or
even be aware of, the complex physical forces that are involved in a dive, they do know
that executing a particular sequence of physical movements will produce the desired
cflect.

How can state predicates be used to describe the diving domain? What are the
preconditions for a somersault or a twist? How do these actions change world state?



Finally, how could we use this knowledge to formulate a plan for a particular dive? It
would be extremely difficult and essentially useless to describe the physical states of
the world during a dive - they are not even perceivable to the diver. In actuality, we
only need to describe the states during a dive in terms of “control® predicates. For
example, AfterSomersault could be used to indicate that the diver has just finished a
somersault. By requiring certain predicates as preconditions of specific actions, this
type of representation could be used to force a “dive plan” to take a particular form.
But since these predicates do not really reveal any meaningful information about world
state, it would be clearer to represent the dive dfrectly as a particular set of actions
that must occur in a prescribed sequence.

This example illustrates the fact that domains with nonobservable state are often
not naturally described by a state predicate description. Indeed, most implemented
planners such as NOAH or SIPE provide predefined procedural operators or schemas
for behavioral goals such as a dive. Recent work on procedural logic and procedural
reasoning systems by Georgell, Lansky, and Bessiere [14] has also emphasized the
representation of procedural forms of knowledge. Procedural descriptions alleviate the
tasks of domain description and plan generation by representing preformed plans in a
compact form that need not be rederived. Procedural domain properties, along with
many other more complex behavioral properties, are easily described in GEM.

While the dive example actually can be described fairly easily by most state-based
specification techniques, we find that a behavioral style is especially useful for de-
scribing the complex interrelationships among actions that often appear in multiagent
domains. Behavioral approaches may also be advantageous when state-based methods
are adequate for planning purposes but are not fully expressive; for example, they
can be used to convey interesting relationships among actions that are useful for plan
explanation. To illustrate both of these points, we consider a new domain that utilizes
priority relationships among actions.

Suppose there are two types of robots, red and green, who all share a tool. This
tool may ounly be used by just one robot at a time; furthermore, once a robot has
acquired the tool, it may keep it until it has finished a given task. [Each robot must
request to use the tool, and robots within each color class may use the tool in request
order only. In addition, red robots have priority over green robots. Thus, if a red
and a green robot are both waiting for the tool, the red one will get to use it first.

If we tackle this problem with a purely state-predicate approach, we would have to
explicitly keep track of the separate request orderings for red and green robots. We
would alse have to record how many red robots are waiting for the tocl at any given



moment. A green robot may acquire the tool only if it has successfully requested
it, the number of waiting red robots is zero, all preceding green requests have been
served, and the tool is free.

For example, to encode the number of waiting red robots, we could use a predieate
of the form RedWaiting(i). Predicates of this form would be added to and deleted
from the state description by red robot requests and tool use actions. Moreover,
the RedWaiting predicate added by a given action would be determined not only by
the form of the action, but by the RedWaiting predicate that belonged to the state
preceding the action. Given this formulation, the state prior to a green robot’s tool
acquisition must satisfy the formula RedWaiting(0).

Now let us consider one of the more complicated domain constraints — the first-
come-first-served requirement imposed on each class of robots. We could associate each
robot with a “ticket number” in much the same way that lines are handled in bakeries.
If each robot can make only one request at a time, a predicate of form Ticket(R,n)
could be used to indicate that robot R has ticket number n.2 When a robot R registers
a new request, a predicate Ticket(R.n) is added to the state description, where n is
the next ticket number for its class. Once a robot acquires the tool, this predicate is
deleted. The state before robot R’s acquisition of a tool must then satisfy the following
constraint:

Ticket(R.n) A =(3 ]. R) [Color(R")=Color(R} A Ticket(R'.j) A j<n] .

Unfortunately, most planners are not equipped to test for or achieve all the possible
prerequisite formulas ~ in fact, perhaps not even a formula such as the one above.
Although a general-purpose theorem prover such as QA3 [15] could handle a broader
class of prerequisite formulas, theorem provers are not very efficient planners. One
approach taken by the SIPE planner is to deal explicitly with specific kinds of resource
constraints. Such measures, however, certainly do not represent a general solution to
the overall problem of action synchronization.

It is also Important to realize that the robot example given above is not overtly
complex nor contrived — priority requirements arise quite often in any environment in
which resources are shared. The red/green robot problem, for example, is a version
of the classic readers/writers database problem. As we can see, the manipulation of
predicates can become quite complex when priority is being described. In traditional
state-based implementations of shared resource problems, data structures are used to

*If we allowed each robot to make more than one request at a time, we would have to associate a
priority number with each robot-request pair, not just with the robot itself,



help save state information. For example, queue structures are normally used to save
requests and preserve information about their ordering. Once a form of priority be-
comes more unusual, however, a data structure that matches the priority structure
directly becomes harder to find, and the priority property becomes harder (and some-
times impossible) to implement [5].

The use of behavioral constraints is a much more elegant approach to priority and
other synchronization properties. Domain properties are specified in terms of succinct
constraints rather than descriptions that are distributed among the preconditions and
postconditions of domain actions. We can describe the entire red/green robot prob-
lem with the few simple constraints given below. Each constraint is described both
informally and by a constraint formula. Although the reader should not expect to
understand these formulas completely at this time, the paragraph below contains a
preliminary description of the notation. The GEM formalism will be described fully
in Section 4.

Action names beginning with a caprtal letter {such as Request), represent an entire
class of actions, whereas lowercase action names represent action instances (requesti ).
The double arrow =—> represents the temporal ordering in a plan; the curly arrow ~
represents the causal relation. The single arrow — (causal prerequisite] indicates a
required one-to-one causal relationship between classes of actions. An infiz predicate of
form “a chefore B” means that action a has occurred but has not yet caused an action
of type B to occur. A temporal expression of form O(pDq) can be read “heneeforth,
tf p 1s true, then q must be true as well.” Finally, because we have not yetl presented
the GEM specification language, we resort below to some nonstandard abbreviations
and conventions. When the notation Robot.<event type> s utilized within a given
constrarnt, the event instances of the types so denoted must all belong to the same
robot. Color(e) ts used to denote the color of the robot at which event e oceurs.

RED/GREEN Robot Domain Contraints

1. Each robot tool acquisition must be preceded {caused) by a corresponding tool
request. ISach such request can be used towards {can cause) only one tool ac-
quisition. Note that this specification allows each robot to make more than one
request at a time, something not accommodated by the state-based specification
given above (moreover, were it included, it would complicate the specification
even more).

Robot.Request — Robot.UseTool



2. All requests by robots of the same color must be totally ordered, and if two
robots of the same color request the tool in a given order, they must be served
in that order. The second constraint below may be read as follows: “If at some
point in time we find that reql precedes req2, then, from that moment forward,
if req2 is fulfilled, reql must have been fulfilled as well.”

(¥ reql.req2:Request. reql#req2. color(reql)=color(req2))
[reql = req2 V req2 = reql]

(V req1.req2:Request. color(req)=color(req2))
[ reql => req2 D O (req2 ~+ usetool2 D reql ~ usetool1)]

3. Il a red robot and a green robot are waiting for the tool at the same time, the
red robot must get to use it first. Note that we could employ an abbreviation
of the form Waiting(a.B) instead of a cbefore B. This would make this constraint

definition easier to read.

(V req1.req2:Request. color(reql)=red. color{req2)=green)
[ reql chefore UseTool A req2 chefore UseTool D
0 (req2 ~~ usetool2 D reql ~» usetooll) ]

4. The tool can be used by only one robot at a time.

(V usetooll.usetool2:UseTool. usetooll#usetool?)
[usetooll = usetooi2 V usetool2 => usetooll]

These conslraints describe the requirements of the domain clearly and succinetly,
Several things about them should be noted. First of all, Constraint 1 emphasizes the
relationship between a specific Request action and its corresponding UseTool directly.
This type of constraint is easily stated in GEM, which explicitly records causal re-
lationships among actions. The relationship between a specific tool request and the
corresponding tool usage would remain hidden in a state-based description unless ex-

plicit connection identifiers were associated with cach Request and UseTool action.?

Secondly, we consider how the notion of “state” manifests itself even in a purely
behavioral specification. In the constraint description above, no explicit predicate
(such as RedWaiting(i)) is used to encode the number of waiting red robots. Instead,
“state” is specified in terms of derived formulae about actions. For example, a robot is
considered to be “waiting” if some Request action has not yet caused a corresponding

SNONLIN's Goal Structures [43] were created for recording this kind of causal relationship.

10



UseTool action. Such a derived state description is used in Constraint 3: reql cbefore
UseTool. Of course, we could have described the predicate RedWaiting(i) in terms of a
more complicated formula, such as

[|{ req:Request | color(req)=red A req cbefore UseTool } || =1i.

In the behavioral specification above, however, there was no need to keep track of the
exact number of waiting red robots. It was enough to state the red/green priority
properly in terms of whether any specific red robot was waiting while a green robot
was waiting (Constraint 3). In this case, GEM’s ability to state properties in terms of
a complete history has come into play. A formula of the form [req cbefore UseTool] is
applied to the entire history of a plan execution. In contrast, state predicates record
only the current state; for instance, RedWaiting(i) was needed to count the number of
waiting red robots at any given instant.

While we intend to use derived formulas for describing some state predicates, we
also plan on augmenting our underlying formalism so that more traditiona! predicate
descriplions of state can be utilized. In mary cases, a state predicate approach is more
efficient, can enhance specification modularity, and can make incremental changes in
domain specification easier to handle. State predicates are also handy for representing
sensed information about the real world as well as for interfacing to humans via natural
language. There are many cases, however, when state predicate description is unwieldy
and the behavioral approach is more intuitive and compact. If both approaches are
combined into a single formalism, they can each be used, depending on which is more
appropriate. Possible methods of integrating traditional state-based descriptions into
GEM are discussed in Section 5.2.

This example has also illustrated a point that will be further elaborated in the next
section: GIEM’s ability to describe priority properties stems largely froimn its application
of temporal operators to sequences of histories or complete state descriptions. Tem-
poral logic, a logic that enables reasoning over sequences of states, will be described
further in Section 4. By a complete state description or history, we mean a description
that includes information about past behavior. The state descriptions used by most
planners encompass no more than a part of a domain state — usually, the currently ob-
servable properties of a domain. In some cases, such as the red/green robot domain,
a more complete record of execution history is useful. Allen [2] points out that infor-
mation about the past is also needed in hospital domains; the course of past events
in a patient’s history is a vital part of medical data, not just the patient’s current
status. It is clear that a complete formulation of planning should have the capability
of recording complete history descriptions, not just current state descriptions.

11



Simultaneous Activity

Although some existing planners can produce partially ordered plans for multiple
agents, their underlying planning model was originally geared towards the production
of single-agent plans. Because of this, little emphasis has been placed on the possibility
of truly simultaneous activity. Many state-based planners have assumed that actions,
even in a concurrent domain, occur one at a time.

In the real world, actions d¢ occur simultaneously, especially if domain activity
is viewed in the large. To specify and plan multiagent activity in a realistic fashion,
we would like to be able to assert that certain actions must occur simultaneously (for
example, two robots picking up a large object at once), or to explicitly prohsbit certain
sets of actions from occurring simultaneously (e.g., mutually exclusive access to a
resource such as a tool or even physical space). We might also like to admit situations
in which the relationship between two actions is truly unspecified: the actions could be
ordered, occur simultaneously, or even overlap. As we will show, a behavioral app!;'oach

easily accommodates description of all these types of properties.
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4 The GEM Model

This section presents a broad overview of GEM’s current specification capabilities. A
full description of the model and its application to program specification and verifica-
tion may be found in my doctoral dissertation [22] as well as in a paper coauthored
with Owicki in 1983 [23].

4.1 Model of Execution

GEM’s model of concurrent activity 1s based on a very behavioral view of the world.
At each point in time, we consider the world’s state to be completely characterizable
in terms of all actions that have occurred up to that instant, as well as the causal,
temporal, simultaneity, and spatial relationships that exist among those actions.

To state it more formally, GEM models concurrent activity as computaisons. Each
computation C is composed of a set of unique objects called evenis which are related
by a partial temporal ordering =, a partial causal relation ~+, and a simultaneity
relation =. Events are also grouped into two types of sets: elements and groups.

C=<E EL G = ,~ = ¢>

e [ = A set of unique event objects.
e I = A set of unique element objects.
s G = A set of unique group chjects.

o =: (£ x E) The temporal ordering is a partial, irreflexive, anti-
symmetric, transitive ordering among events.

o ~n+: (F x E) The causal relation is a partial, irreflexive, antisym-
metric, nontransitive relation between events.

o =: {f£ x E} The simultaneity relation is a partial, reflexive, sym-
metric, transitive relation among events.

o ¢:(Ex{EL,G}) A set membership relation between events and
elements, or events and groups.

Each event in a computation models a distinct action in the world domain, each relation
or ordering relationship models an actual relationship between domain actions, and
each elewment or group, a logical location of activity or grouping of locations in the
domaim consisting of a set of events. In order to model the world in 2 meaningful and
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coherent fashion, various rules and conventions must be obeyed by all computations.
These are described below.

Each event in a computation is distinct; it may be viewed as a unique token.
Moreover, events should be regarded as atomic — that is, they occur atomically relative
to other events in the computation. This is not to say that events are totally ordered;
events may happen simuitaneously. We just do not represent event duration explicitly.
From an intuitive standpoint, it might be useful for the reader to view each event as the
end point of some logical action. Actions with duration can be modeled by using two
or more events. Ior example, we might use one event to model the start of the action,
another to model its conclusion. Action intervals are discussed further in Section 5.3,

In our specilications, events may have parameters and may also be organized into
types, each of which represents some class of actions. Tor example, Paintfo:Object,
c:Color) could represent the class of actions that paint an object a certain color. A
specific instance of this type might be parnt{ladder,red). Lowercase tokens are used to
denote specific event instances, with uppercase being used for event types.

[Events can be related by three relations: =, ~+, and =. The temporal order =,
a partial, irrefllexive, antisymmetric, transitive relationship, models event ordering in
time. In contrasl, the causal relation ~~ is partial, irreflexive, antisymmetric and not
transitive - it represents “direct” causality. The existence of a causal relation between
iwo events also implies a temporal ordering between them (el~+e2 D el=¢2), but the
reverse is nol lrue; just bhecause two events may be forced to occur in some sequence
does nol mean that they are causally related. For example, two noncommunicating
hhumans may be modeled as causally autonomous units, even if they are forced to walk
through a door one at a time. Finally, the simultaneity relation = is partial, reflex-
ive, symmetric, and (ransitive, and models the necessarily simultancous ocenrrence of

events.! Note that events can still potentially occur simultaneously even if they are

—

unrelated by =.

In addition to being ordered, events are also grouped into two types of sets: ele-
ments and groups. Elements are nsed to represent locations of sequential activity. Each
event must belong to exactly one element and all events belonging to the same element
must be totally ordered by the temporal ordering =. The notation ¢* indicates that
event ¢ is the ith event taking place at its particular element.

1t is interesting to note C.G.Jung suggestion that world phenomena be described not only in terms
of causal and tempaoral relationships, but with a simultaneity relation as well. This was proposed
as a way of describing unrepeatable psychic phenomena [39].
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AGENT1 AGENT2

Tool
actionA usel actionC
actionB use2 actionD

Figure 1: Execution of Agentl and Agent2

The other type of event set, the group, is used for representing higher-level struc-
tural relationships among locations of domain activity. Each group consists of the
events within a specified list of elements and/or other groups. In Section 4.3 we will
show how groups are used for modeling causal limitations (for example, scope rules)
among the events occurring at different loci of activity.

The following example illustrates the ideas presented thus far. Suppose we were

using GEM to represent two independent agents, Agentl and Agent2, which share a
tool and perform the following activities:

Execution of Agentl: actiond; Tool.usel; actionB

Execution of Agent2: actionC; Tool.use2; actionD

Let us assume that all uses of the tool must occur sequentially, but no specific order
is presumed. Figure 1 depicts one way GEM might represent this domain.® Any
GEM computation within this domain would have to include the following temporal

relationships:

Agentl.actionA = Tool.usel ==  Agentl.actionB

fror

Agent2.actionC = Tooluse2 = Agent2.actionD

While we know that some temporal order must exist between Tool.usel and Tool.use?2,
it should be noted that no temporal ordering can he assumed between actionA and
actionC, or between actionB and actionD. In fact, our representation allows for the
possibility of these events occurring simultaneously.

8Squares represent groups, circles represent elements, and lowercase names represent events.

-
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Finally, for purists among our readers, we should point cut that both elements and
groups are merely notational devices; the representation of a computation could be
simplified to include only events and the relations ==, ~+, and =. By clustering events
into elements and groups, however, we implicitly impose constraints on the temporal
and causal relationships among those events, thereby easing the task of specification.
For example, because usef and use2 both belong to the same element (7Tool), they
are implicitly compelled to be totally ordered. Similarly, the use of groups within the
specification depicted in Figure 1 imposes some constraints on the causal relation that
force causal imdependence between the events belonging to Agent! and those belonging
to Ageni2. These implicit constraints will be described in greater detail in section 4.3.
All of these element and group constraints, however, could have been left until imposed
explicitly by the domain describer.

4,2 Temporal Assertions on GEM History Sequences

The structure of a GEM computation actually allows for many alternative physical
executions. For example, a computation of the form

= b =
a d (1)
= o =

could be performed in three possible ways in physical time:
1) 1ste 2ndd 3rde 4dthd
2) 1sta 2nde 3rdb dthd

3) 1sta 2ndbec 3rdd
Note that, in the third execution, # and ¢ occur simultaneously. We know that one of

these time executions must occur, but cannot assume any one of them actually does.

We shall call the possible executions of a computation its valid history sequences. A
history o of a computation C is simply a set of partially ordered events that is a prefiz
of that computation. It may be pictured as the set of events {(and the relationships
among them) on one side of a potential time line cutting through a computation. In
other words, each history represents a possible point an execution of the computation,
plus everything that has happened up until then. For example, compﬁtation (1) has
six histories, each consisting of a given set of events and their relationships:

eo :{} o;:{a} a;:{ab} ap:fac} am:{abe} e, :{abed}

Each valid history sequence {VHS) represents an execution that is growing with

time. Every history in the sequence {except the first) must be a superset of its pre-
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decessor. Moreover, two events may enter a given VHS in the same history only if
it is possible for them to occur simultaneously, i.e., they have no temporal ordering
relationship between them. For example, if el==e2, then el and e2 would have to
enter a VIS in distinct histories. In the same vein, if two events must take place
simultaneously (for example, events el and e2, where el = e2), they must always
coter a given VHS in the same history. A history sequence is said to be complete if it
starts with the empty history. Such a history represents an execution of a computation
that starts at a point in time in which no events have yet occurred. In the example
given above, there are three potential complete valid history sequences that contain
all events a, b, ¢, d:

Sl ap o of o5 O

S2: oy oy o om 0p

53 ap @ am  ap

We now define a valid history sequence more formally. A sequence of histories S

of the form ag, a1, az,... is a VIIS if and only if it has the following properties:

1. The sequence is monotonically increasing: ag C a; C as...

2. Temporally ordered events must enter the sequence in distinct histories:
(VazeS,i > 0)(Vej eke{a; — a;_1})-[e] = ek]

3. Simultaneous events must enter the sequence in the same history:
(Ve ek)les = ek 3 (V a;)|efea; D ekeay))

We will be using first-order temporal logic formulas (constrarnts) to describe the
properties of multiagent domains. Simple tmmediate (nontemporal) formulas @ are
applied to single histories, e.g., « | @. The formulas can utilize the usual connectives
and quantifiers with their standard interpretation: A,V,~,D,<=,V,3, 3! (existence
of a unique coustant). Event, element, and group instances are used as constants, over
which range event, element and group variables. The predicates that may be evaluated
with respect to a particular history include the following:

occurred(e}) Tvent e is in the history.

eclbL Event e is in the history and belongs to element EL.

eed Event e is in the history and belongs to group G.

el ~ g2 el and e2 are in the history and el causes €2.

el = e2 el and e2 are in the history and el temporally precedes e2.
el = e2 el and e2 are in the history and must occur simultaneously.
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The linear-time temporal (modal) operators O (henceforth), ¢ (eventually), and
O (next) are logical operators that apply formulas to sequences.® In most temporal
logics they apply formulas to sequences of states [32]. GEM follows traditional formu-
lations of linear-time temporal logic, but applies the modal operators to sequences of
histories (i.c., VHSs).” For valid application (and nesting) of temporal operators, each
VIS must (and does) have the tail closure property: if S = o, @y, ..., @iy, @, Gigq, -
is a VHS, then S[{] = a;,a¢q1,... is a VIS, Given a history sequence of the form
S = ag, ay,...., we may then define the semantics of the temporal operators as follows:

o P is henceforth true for a sequence S if it is true of every tail sequence of §.

SkEOP=(¥>0)5HkEP

o P is evenlually true for a sequence S if it is true for some tail sequence of S.

SEOP=(3i20)S[{]|EP

o P is Lrue nex! for a sequence S if it is true of the first tail of 5.
SEQP=S1]EP

o An immediale (nontemporal) formula @ is true of a VHS S if it is true of the

first. history in the sequence:
SEQ=akQ

Firsi-order temporal logic formulas may be applied to GEM computations by view-
ing a computalion ' as the set of all its valid history sequences. A computation satisfies
a constraint if and only if all its vahd history sequences satisfy that constraint:

CEP=(VVHS S of C)SEP.

®This is in contrast to branching-time temporal logics, which regard the future as a hranching tree.
In these logics, the modalities can vary according to how they are applied to the various paths
through that tree. We have found linear-time temporal logic te be adeqguate as well as simpler to
use.

“In a way, cach history may be viewed simply as a very “large” state,
LRl v
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4.3 GEM Specification Language

How do we define the constraints that delimit the properties of a domain and the
legal plans that may be executed within it? The GEM specification language serves
this purpose: it is a set of abbreviations and notational devices for writing first-order
temporal logic constraints on history sequences. Semantically, any GEM specification
o is equivalent to {can be expanded into) a set of ordinary first-order temporal logic
formulas about events, elements, and groups and the relations =, ~+, =, and .
Constraints define a class of executions by stating explicitly:

¢ What types ol events may occur
¢ How those events must be clustered into elements and groups
¢ What ordering relationships must exist among the events

o What parameters are associated with events and how the relationships between
events affect their parameter values

Every plan generated by the proposed GEM-based planner will be represented by a
set of partially ordered events — i.e., by a computation. A given domain specification ¢
will “admit™ only a subset of the possible plans imaginable. The planning algorithms
must guarantee that every physical execution (i.e., every valid history sequence) of a
generated plan will adhere to the rules of the domain (the constraints in specification
o) and achieve the desired goal.

Just as elements and groups model the structural aspects of a domain, they also
serve as the structural components of our specification language. Each specification
o consists of a set of element and group declarations, along with a set of explicit
constraints on the events that belong to those elements and groups. Element and
group types may be declared and instantiated, and constraints are “scoped”; they are
imposed only on the events that belong to the element or group with which they are

associated.

For the sake of brevity, we will not describe the entire GEM specification language
here. Nor can we possibly integrate the full language into the planner; GEM was
designed as a formalism, not as an executable entity. Part of our research effort
involves identifying a useful but implementable subset of the full model. We describe
below a set of initial constraint types and other language mechanisms that we hope to
include in our domain description language and planning system. Appendix A contains
a syntax for the portion of the GEM specification language presented in this report.
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4.3.1 Delimiting the Set of Admissible Events and Imposing Constraints
Based on Structural Relationships

In GEM, the set of events allowed within a plan is delimited by
1. declaring locations of activity (i.e., elements) and

2. explicitly listing the types of events that may occur at each location.

Intuitively, we may think of a location as an agent, and of the events at a location as
the legal actions of that agent. Only events occurring at declared locations may be
part of a valid plan. Moreover, events belonging to the same element or Jocation are
forced to occur sequentially — i.e., they must be totailly ordered within the temporal
ordering =.

For example, the following element specification models an object called Obj1 as-
sociated with two types of events, Move (the action of moving the object to a specified
location) and GetCurrentPosition (an action that yields information about the object’s
current position). Because they belong to the same element, all Move and GetCur-
rentPosition events belonging to Objl are constrained implicitly to be totally ordered
within the temporal order =>.

Objl = ELEMENT
EVENTS
Move(x:INTEGER, y:INTEGER)
GetCurrentPosition(lastx:INTEGER, lasty:INTEGER)
END Obj1

Just as clustering events into elements is a way of constraining their temporal
ordering, a way to limit the permitted causal relationships among events is to cluster
them into groups. Each group definition serves as an implicit constraint on the causal
relation between events. Groups can be used to model the causal limitations imposed
by physical proximity, programming-language scope rules, and other causal limitations
related to siructure. In fact, the use of structure as an implicit constraint on the causal
effects of actions is one way of handling the frame problem.
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G3

&)

ELEMENTS EL1.EL2 EL3.EL4.EL5.ELG

Gl = GROUP(EL2.EL3)
G2 = GROUP(EL4.ELS)
G3 = GROUP(EL3.EL4)
G4 = GROUP(EL1)

Figure 2: A Group Structure

As an example of the use of group structure, consider the group/element strueture
depicted in Figure 2. The possible causal relationships among the events belonging to
the elements in the figure are limited as {ollows:

An eventin may only cause an event in
EL1 ELL.EL6
EL2 EL2 EL3 ELG
EL3 EL2, EL3, ELA,EL6
EL4 EL3,EL4, ELS,ELG
ELS EL4, ELS, ELG
EL6 ELS

Note how G1, G2, and G4 could be representations of agents, with G3 modeling a
communication channel between G'1 and G2, and with ELG representing a resource
shared by all three agents.
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Certain events may also be designated as porfs. If so, they serve as “access holes”
to their groups [22]. More specifically and formally, we can define the constraint on
the causal relation imposed by a group structure as follows. Given that elcL1 and
e2¢ XL2, el ~n+ e2 is allowed only if

access{(EL1, EL2) V [port(e2, G) A access(ELL, G)].

We dceline access{z,y) to be true if either (1) z and y belong to the same group or
(2) v is global to z. If we assume that all elements and groups within a specification
are surrounded by a single group (an assumption that does not further constrain the
permitted causal refationships among events), we can define access{z,y) as follows:

access(z,y) = (AG)|y<G A centained(z,G)],

where ycG denotes direct membership and
contained(x, (') = z¢G V (3G")[z<G' A groupcontained(G', G)]
groupcontained(G1,G2) = (Vz)[zcG1 D 2eG2] .

4.3.2 Attaching Additional Constraints to Elements and Groups

As we have indicated, cach GIEM specification consists of a set of element and group
declarations. {n addition to the constraints imposed implicitly by group/element struc-
ture, constraints may also be associated with each element or group. These constraints
pertain only to the events belonging to the particular element or group in which the
constrainl is defined. For example, we could augment our definition of Obji as follows:

Obj1 = ELEMENT
EVENTS
Move(x:INTEGER. y:INTEGER)
GetCurrentPosition(lastx:INTEGER. lasty:INTEGER)
CONSTRAINTS
1) {V¥ move:Move. currpos:GetCurrentPosition)
[(move=>currpos) A =(3 anothermove:Move) [move=sanothermove=—>currpos]}

D move.x = currpos.lastx A move.y = currpos.|asty
END Obj1

Constraint I states that each CurrentPosition event belonging to Objl must truly yield
the most current position of object Objl.
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4.3.3 Element and Group Types

To alleviate the specification task further, GEM also includes a mechanism for describ-
ing element and group types. Each instance of a defined type is a unique element or
group with a structure identical to that of its type description. From the standpont of
semantics, the use of types and instances may be viewed as a simple text substitution
facility; each type instance is shorthand for a separate but identical element or group
declaralion. The GEM type facility is extremely flexible and expressive; types may
not only be parameterized, but may also be defined as refinements of other previously
defined types.

As an illustration, we return once again to our description of Obji. We might form
a more generic Object element type description, as follows:

Object = ELEMENT TYPE
EVENTS
Move(x:INTEGER. y:INTEGER)
GetCurrentPosition(lastx:INTEGER, lasty:INTEGER)
CONSTRAINTS

END Object

Obj1, as well as any other such object, may then be described as an instance of type
Object:

Obj1 = Object ELEMENT

We could also form a new element type that is a refinement of Object. For example,
a LimitedObject is a type of Object with a limited range of movement.

LimitedObject(xlim:INTEGER. ylim:INTEGER) = Object ELEMENT TYPE
ADD CONSTRAINT:
(v move(x,y):Move) [ |x| < xlim A |y] < ylim |

We have found both the scoping of constraints (i.e., applying constraints only to
the groups and elements in which they are defined} and the use of group and element
type-hierarchies to be invaluable specification tools. Without them, writing complex
specifications would become almost impossible.
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4.3.4 Common Constraint Abbreviations

In principle, the constraints associated with elements and groups may be any first-
order temporal logic formulas. However, certain constraints arise so frequently that
abbreviations for them are particularly useful. We list some of the most commonly
employed ones below. Because of the computational infeasibility of enforcing all first-
order constraints, it is likely that a certain subset of constraint types or constrain{
paradigms will be chosen as targets for implementation in our proposed planner. We
hope to include all of the constraint forms listed below.

Prerequisite Constraints

Prerequisite constraints are used for restricting the causal relation ~+ among events.
These constiraints form the backbone of most specifications and we believe them to be
easily enforceable by a planner. In general, prerequisite constraints serve a generative
funciion in forming plans — they result in the insertion of new events into the partial

ordering.

s Simple Prerequisite: F1 — 2
Fach event of type £2 must be caused by exactly one event of type E1, and each
event of Lype K1 can cause at most one event of type F2. In essence, this is
a one-to-one causal requirement. For example, in the preceding section we had
Robot.Request — Robot.Usetool.

£l — E2 =
(Ve2 : E2){Qlel : E1)[el ~+ e2]] A
(Vel : E1){ at most onee2 : E2)[el ~ €2]

o Nondelerministic Prerequisite: {E1,..En} — +E
ISach event of type £ must be caused by exactly one event of type E1 or E2 or...
FEn, and an event of type E1 or... Fn can cause at most one event of type E.

{E1,...,En} — +E =
(Ve: E)(les : {ElL, ..., En}}ei ~ e] A
(Vei : {E1, ..., En}}{Tat mostonee : E)[ef ~ €]

o Fork: E — {E1,..En} = (Vi,1<{<n}E — Ei
o Join: {El,..En} — E = (Vi,1<i<n} i — E
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e Simultaneous Activity
A required simultancous occurrence of, say, each event of type £1 with an event of
type E2 could be described by a constraint of the following form:

(Vel : E1){3e2 : E2)[el = e2] A (Ve2 : £2)(3el : E1)[el = e2]

o Priority and Mutual Exclusion
Suppose that we define el cbe fore £2 (causal before] as follows:

el chefore £2 = occurred(el)} A ~(3e2 : E2)[el ~» e2]

(el has occurred but has not yet caused an event of type £2). We can then express
priority and mutual exclusion properties by using the following kinds of constraints:

o Priorily of transitions of the form el ~» €2 over those of the form e3 ~r ¢4 :

(el cbefore E2 Aedcbefore 24) D O [e3 ~ ed D el ~r €2]

o Mutual exclusion between any events occurring between el and a corresponding
event of type E2, and those between e3 and a corresponding event of type E4:

—(el cbefore E2 A €3 che fore E4)

For example, if two robots cannot wait {or a tool at the same time, we would have

(Vrequestl, request2 : Robot. Request, request] 3 request2)
—(requestl che fore UseT ool A request2 cbe fore UseTool)

If we define a similar thefore abbreviation as {ollows:
el thefore E2 = occurred(el) A =(Je2 : E2)[el = €2]

then more strictly temporal forms of mutual exclusion (or priority) can be ex-
pressed, i.e., constraints of the form

-(el thefore E2 A e3 the fore [4).

Finally, simple mutual exclusion between two events would reduce to a restriction
of the form el = €2V ¢2 = ¢l.

Priority and mutual exclusion constraints will be harder for a planner to enforce than
prerequisite constraints because all possible executions of a given plan must often be
considered. We discuss alternative approaches to this problem in Section 6.
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¢ Event Preconditions
Using the modal operator (O (next), we can easily express the notion of an event
precondition. If the precondition for an event e is defined by a formula P, we simply
require that P be true in the history just preceding the history in which ¢ enters a valid
history sequence. Specifically, we could define the abhreviation Precondition(e, P) as
{ollows:

Precondition(e, P) = (Qoccurred(e) A ~occurred(e)) D P

If we use the abkbreviation
occursnezt(e) = Qoccurred(e) A —occurred(e) ,

then Precondition(e, P) reduces to occursnezt(e) D P.
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5 Proposed Extensions of GEM

While GEM, as it is currently defined, is an extremely powerful specification tool, there
are definitely many potential areas in which it could be enhanced as a specification
framework for multiagent planning. Below we consider three of these areas and discuss
various related issues and prospective approaches.

5.1 Action Hierarchies

One extension of GEM that we would like to implement is the capability of modeling
composite actions — that is, actions whose descriptions can be decomposed into sets of
partially ordered events. This extension would be relatively easy to do if “composite
events” were regarded merely as abbreviations of more complex networks of events.

For example, we could define an event type A that would always expand into a
temporal network of the form:

= (( =
BeginA = B E = EndA
== D =

Fach instance a of type A would be considered as beginning with an event instance
of type BeginA, contaming event instances of type B,C, D, E with the prescribed
temporal relationships, and ending with one of type EndA. The event types BeginA
and fFrnd A serve as a sort of interface between A and the rest of the specification. For
instance, if we had a constraint of the form IF — A, it would simply be expanded
into I — DBegtnA. This type of hierarchy was utilized in my dissertation on GEM
(22} and was referred to as event abbreviation.

If we want the hierarchical specification of actions to preserve eertain semantic
properties, however, the problem becomes greatly complicated. For example, suppose
we write a specification that uses a [noncomposite] event type A, and then go on to
generate a plan that utilizes events of type A - namely, a plan that conforms to all
of the constraints in our initial domain specification. Now, suppose that we wish to
alter our specification and decompose A further, say, into the form described above.
{This would be a desirable method of constructing a domain specification because it
conforms to the general principles of top-down design.) The question is, is our previous
plan still valid? Unfortunately, it may not be.

For example, we could have a constraint about the event types composing A that
was not violated in the original plan, but is now vioclated in the plan in which event A
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has been expanded. In hierarchical planners such as NOAH, this sort of problem was
handled by requiring that system constraints be rechecked after every event expansion.
We could of course utilize this same “brute force” approach. A more desirable solution,
however, would be to find a set of resirictions on domain constraints that permits
hierarchical expansion without subsequent rechecking after expansion.

One such restriction, for example, might require that the set of event types compos-
ing an expanded event no! be part of the original specification. Under this restriction,
event expansion would necessarily be accompanied by the addition of new event types
to the specification itsell {as well as new pertinent constraints). In essence, we would
be requiring thal there be no “interaction” between the the events composing an event
and the other events in the original plan [22]. This methodology conforms to the notion
of event expansion as the process of mapping a high level plan onto one that is at a
lower level of detail. Even when using a top-down method of development, however,
there will still be cases where such prohibitive restrictions could not be obeyed. In

these situations rechecking would have to be done.

5.2 State Descriptions and the IFrame Problem

One of our more important goals in extending GEM is to allow for different ways of
describing state. Despite the emphasis in this paper on descnbing domain properties
strictly in terms of action interrelationships rather than in terms of the state of their
environment, some properties really do lend themselves better to state-based descrip-
tion. IFor instance, this is true for properties that specifically deal with the environment
in which actions occur (one example might be a requirement for the maintenance of
the integrity of a data base).

State-based descriptions can also be more modular. In other words, the ways of
achieving a particular state can easily be varied and expanded without significantly
altering the domain deseription as a whole. For example, suppose P is prerequisite
to an action A. There may he many equally good ways of achieving P, any one of
which could be inserted into a plan before A. In addition, new ways of achieving P
may arise in future. Traditional state-predicate approaches make it casy to add these
new methods to the domain description without altering it signifiecantly. One nced
only assert which actions make P true (or untrue); a state-based planner will then be
able to easily use any of them to achieve P. In contrast, a strictly behavioral approach
has to describe explicitly all the action patterns that enable A to occur. This type of
description might be more difficult to modify or amend.
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Obviously, there is a trade-off between using strictly behavioral-style descriptions
and using those that are based on state predicates. A property that really has to do
with specific action relationships should be described as such; a property that can more
easily be described in terms of a state abstraction should be described by using state.
Luckily, there is no difficulty in employing both types of description within the GEM
specification framework.

Probably the most straightforward way of integrating state descriptions into GEM
is by using derived state predicates. Such predicates are really formulas about actions
and their relationships. We have already seen some uses of derived state predicates
- for example, the definitions of the infix predicates cbefore and thefore. As another
example, we could use the following derived formula on execution history to define the
predicate HandEmpty(R) (robot R’s hand is empty):

HandEmpty(R) = - (3 pickup:R.PickUp) [occurred(pickup) A
= (3 putdown:R.PutDown) [pickup ~+ putdown]]

or, equivalently (using the cbefore predicate),
HandEmpty(R) = - (3 pickup:R.PickUp) [pickup chefore R.PutDown] .

These definitions state that a robot’s hand is empty if it has not executed any PickUp
action that has not been followed by a corresponding PutDown action.

The derived-state-predicate approach, however, does suffer from some of the same
modularity problems described above. In order to describe a derived predicate, all
action patterns that make that predicate true have to be forseen. However, we make
this method of state description more modular and extensible by defining a derived
state predicate P as the disjunct of all action patterns that are supplied as a means
of achieving P over the course of a specification. With this methodology, new ways of
achieving P could easily be added.

One alternative “twist” on the derived predicate approach is to cast traditional
state-predicate add/delete lists in terms of the GEM formalism. Specifically, for each
state predicate P, we could define two generic event classes: Add(P) and Delete(P).
Any event type considered to be one that makes P true would be classified as an Add(P)
event type, while any event type that makes P false would be a Deleie(F) event type.
For example, in the robot scenario described above, we might elassify R.PickUp as
a Delete(HandEmpty(R)) event type and R.PutDown as an Add(HandEmpty(R)) event
type. Any predicate P for which Add(P) and Delete(P) event types have been declared
could then be described by the derived formula
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P = (3 adder:Add(P))[occurred(adder) A
(V deleter:Delete(P))[occurred(deleter) D deleter—>adder]]

Although this derived formula seems to be a second-order definition, the Add(P)
and Delete(P) definitions should just be regarded as abbreviations that are expanded
imto sets of event types. The generic derived formulas for all predicates P are then
instantiated for each predicate /P in the specification. Both of these steps preserve the

first-order nature of Lthe specification.

1t is also interesting to note that this method of defining state bears great similarity
to the definitions of whal it means “for a property to hold” that were given in recent
theses by Pednault [33] and Chapman [6]. Both definitions have the flavor of: “some-
thing has made the property hold, and nothing could have possibly occurred afterwards
that makes it not hold.” We reversed the notion of “nothing bad has occurred after-
wards” to “every bad thing must have occurred before” to handle the possible case of
simultaneous occurrence of an Add and a Delete event. Because Pednault investigated
only sequential plans, this case was not considered. Chapman’s definition for partially

ordered plans, however, is equivalent Lo ours.

Actually, the defnition given above does not fully capture the conventional uses
of add/delete lists. To do so, we would also have to specify the condrtions under
which an event qualifies as an “adder” or “deleter” ol a predicate. Traditionally, this
has been done by specifving the eflects ol an action in tbe same context that action
precondilions are supplied. Axioms of the form “When action A occurs, predicates
P;...P, must have been in the preceding state, and afterwards, predicates @;...Qy, are
deleted and predicates Ry...f% are added” are utilized. The precondition predicates in
these axioms are often used in a way that constrains the added and deleted predicates.
For example, we might say “In order for a robot R to put down a block, predicate
Holding(R,n) (i.e., R is holding n blocks) must have been true in the preceding state,
and afterwards, predicate Holding(R, n) is deleted and Holding(R,n — 1) is added.”

To fully mimic this traditional way of specifying the eflects of events, we must
qualify our delineation of Add and Defete events.® Each event type that is supplied
as a member of Add(P) or Delele{P) would also have to be associated with a derived
predicate (event precondition) that must be true in order for an event of that type to
qualify as an “adder” or “deleter” of P.

80f course, in a behavioral framework, state can be encoded in several ways, thus making the quali-
fication of “adder” and “deleter” events unnecessary anyway. For example, to encode Holding{R,n)
we could use a derived formula that counts the number of PickUp and PutDown events executed by
robot R. To fully mimic the traditional add/delete approach, however, event qualification is needed.
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More formally, we could use the function edd-prefe,P} to denote the precondition
that must be true before event e is executed in order for it to qualify as an “adder”
of P. Similarly, we would use the notation delete-prefe,P} for a “deleter” of P. Then,
assuming that we want FI,... En to be the event types which potentially make P
true, and F71,... Fm those that make P false, we would use the following meta-level
definition to qualify the Add{P} and Delete{P} event classes with respect to a given
VHS &:

Add(P) = { e:{El.... En} | (V ae S) a |= PreCondition(e,add-pre(e.P)) }
Delete(P) = { ::{F1.... Fm} | (¥ a¢ S) a | PreCondition(f delete-pre(f.P)) }

In other words, the “adders” of P are all those events of type Ef or ... En whose
associated “adder precondition” is true in the history just before they enter VHS S.
The analogous description is then used for the “deleters” of P. We are also currently
investigating the use of backwards temporal operators (operators that apply formulas
to past histories) that will obviate the need for a meta-level definition as used above.
Such backwards temporal operators will also allow even richer derived state formulas

to be written.

As an extension to the Add/Delete approach we might also want to allow for the
possibility of using “state recognition” or “state testing” events. In real world situa-
tions, an environmental state may not have been deliberately achieved via a planned
action, but rather, the state has simply been observed, For example, we might notice
that a box is red, although we never painted it that color. In such cases, we could use
a special purpose axiom of the form

(VP)[Observe(P)e Add(P)).

Namely, if an agent somehow observes that state predicate P is true, then as far as our
representation is concerned, P is true; the observation serves as an unqualified Add{P}
event. Similarly, we might use an axiom of form

(VP)[Observe(~P)eDelete( P)).

Despite its similarity to the add/delete lists used by planners, the method of de-
scribing state discussed here is still derived - that is, the values of state predicates are
still derived or computed from the action structure of a given plan or computation
history. Whereas events are definitely “first class” objects in our model, state predi-
cates are not. This standpoint is, of course, natural within an event-based framework
such as GEM. It also has an interesting advantage ~ states are always calculated. This

31



encourages domain describers to avoid some of the ambiguous situations that arise

when a purely state-based approach is in use.

For example, suppose we have predicates of the form Distance(R1, R2, dist}, Loca-
tion{R1, loc1) and Location{R2, loc2) describing the distance between two robots and
their respective locations. Deseriptions of domain actions Move(R1, loc3), Move(R2,
loc4) might specify that these events add predicates of the form Location(R1, loc3},
Location{R2, loc4) to the domain description and delete the predicates Location{R1,
loc1)}, Location{R2, loc2). But how is Distance{R1, R2, dist) aflected over time? This
is dependent on the relative ordering (or even possible simultaneity) of the two actions.
It is also influenced by the peculiarities of the domain itself. For example, suppose
that the distance between two robots is always fixed — they might be attached to one
another by a rigid bar - and that the movement of one robot automatically changes
the location of the other. In this case, the Location and Distance predicates must be
computed differently than they would be in other domains. Traditional state-based
approaches of manipulating state {(i.e. action add/delete lists) do not deal effectively
with these problems. But in a framework where state is always derived or calculated,
the value of the three predicates is always defined - by derived predicate formulas
which have been set up to reflect the properties relevant to a given domain.

Our “calculated” view of state predicates has some other interesting consequences.
For example, suppose we asserted that P D @ - i.e., if state predicate P is true, then
predicate @ is true. How can this assertion be interpreted within our action-based
framework? Several approaches might be taken. For example, given that P has been
described by some action pattern and ¢ has not, this assertion might be intepreted
as stating that P’s action pattern can serve as a definition of @. If @ has already
been defined by its own derived action formula, however, an assertion such as P > @
might be interpreted as an action contraint: i.e., that the action formula describing @
must be true whenever the formula for P is true. How to interpret assertions on state
predicates is a topic of ongoing research.

How does all of this affect the frame problem — i.e., the problem of determining
how actions influence the truth or falsity of state predicates? Strictly speaking, purely
behavioral descriptions do not really need to address conventional manifestations of
the frame problem. The state of the world is considered to change only as events occur;
i.e., the “state” ss the set of event occurrences, and the only type of changes in that
state are the occurrences of events.

When using a state predicate described in terms of action occurrences, the frame
axiom in force is quite simple: an atomic formula of form P(a,b) changes value only
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when events occur that alter the value of P’s defining formula. This axiom is also used
when we cast a state description in terms of Add and Delete event classes; at base, this
form of description expands into a derived formula. However, by using the Add/Delete
mechanism we do implicitly assume that the value of a predicate P changes only as it is
explicitly manipulated by the Add(P) and Delete{ P) actions. While this resembles the
“STRIPS” assumption on the surface, it differs in that no assumption is made about
actions occurring in isolation. Whether actions occur sequentially or simultaneously,
a predicate P’s defining formula will yield a truth value for P.

A problem related to the frame problem is the difficulty of specifying all possible
circumstances that could affect an action - the qualification problem, This is exempli-
fied by the “potato in the tailpipe” puzzle - i.e., how can one specify all actions that
could possibly affect a driver’s ability to start a car? One approach might be to classify
event types, much as we did above for Add(P) and Delete(P). For example, we could
have a generic BreakCar event class, and assert that all events of this class prevent one
from starting a car. In the course of building a specification, we could classify certain
specific event types as BreakCar events. This use of the BreakCar event class is similar
to an abnormality condition in McCarthy’s work on circumscription [26].

Finally, as we suggested earlier, GEM’s ability to structure events into elements
and groups is another way of modeling limitations of effect. For instance, if an agent
is modeled as having no causal access to a car, then it could not possibly perform any
action that could prevent it from being started. This technique is actually opposite to
the circumseription approach.

5.3 Explicit Time and Temporal Intervals

The current formulation of GEM includes no explicit use of real time. GEM’s use of
relative time (i.e., representing the order of actions rather than the exact times they
occur), however, is probably the most reasonable representation of time for most mul-
tiagent applications. After all, when dealing with problems involving concurrency, one
must consider potential race conditions affecting action orderings® as well as other syn-
chronization concerns. Reliance on real-time estimates for purposes of synchronization
can be quite risky.

It would be relatively easy, though, to add the notion of real time to GEM. One
approach would be to associate each event with a time parameter. For example, an

®A race condition occurs when the outcome of a computation depends on the relative speeds of its

component processes.
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event instance denoted by ef...,t) would be regarded as occurring at time t. Given this
formulation, we would impose the following additional constraint upon all computa-

tions:
(V el(t1). e2(t2): EVENT) [ t1 < t2 > el(tl) = €2(t2) |

In other words, given an event el occurring at time t1 and another event €2 occurring
at time t2, if {1 < #2, then el must occur before €2 in the temporal order. This
constraint would force all valid history sequences of a computation containing timed
events to properly reflect the required ordering of those events in time.

Qur current formulation of GEM also does not explictly address the problem of
representing time rntervals or events with duration. As we indicated earlier, however,
these concepts could he integrated into GEM by means of a few notational additions.

Suppose we had actions a and b that are considered to occur over periods of time.
To represent the duration of these events and the possible relationships of the intervals
over which they occur, we could begin by representing each single action with two
actions: begin(a). end(a). begin(b). end(b). We could then go on to define the possible
interval relationships between a and b as follows (these are the same interval relation-
ships used by Allen (2]):

a beforeb = end(a) = begin(a)

a equal b = begin(a) = begin(b) A end(a) = end(b)

a meets b = occursnext(end(a)) O O occursnext(begin(b))
aoverlaps b = begin(a) = begin(b) A end(a) = end(b)
aduringb = begin(b) = begin(a) A end(a) = end(b)

a starts b = begin(a) = begin{b) A end(a) => end(b)

a finishesb = begin(b) = begin(a) A end(b} = end(a)
A predicate P considered to hold over a specific interval (say, the interval hetween an
event of type Begin(P) and a corresponding event of type End(P)) could be defined by
the following derived formula: P = (3 begin(p):Begin(P}) [ begin(p) tbefore End(P) |
Future work with GEM will establish the actual utility of these proposed extensions.

6 Planning Method

How can we utilize the GEM specification framework as the basis of a planning method?
In this section we describe some initial ideas concerning “behavioral” planning. In the
next section we shall illustrate these ideas with an example from the blocks world

domain.
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Like most planners, the input to our system will be a set of domain constraints as
well as descriptions of initial and goal configurations. These initial and goal configura-
tions, or “states,” might be described by partially ordered sets of events. For example,
the initial state in a blocks world might be a partially ordered set of block iritializa-
tion events. The goal state might be described by a set of final PutDown events; for
example, final actions of the form PutDown(A.B) and PutDown(B.C) could be used to
describe a final stack of blocks A on B on C.

Alternatively, we could describe the initial state in terms of a set of domain-specific
predicates that are defined to be initially true. For example, suppose that we have a
[nontemporal] predicate P and want to assert that P is initially true. In essence, we
would like the following meta-level formula to be true:

(V complete VHS S)[ S =P |
ot equivalently,
(V complete VHS S){ a0 =P ] .

We will abbreviate this formula as INIT P. Initialization conditions can then be ex-
pressed as a set of meta-level axioms of this form.

Goal conditions can also be described in terms of state predicates. For instance, in
the blocks world domain, we could define On(A.B) as

[ INIT On(A.B) A - (3 pickup:PickUp(A))[occurred(pickup)] | v

(3 putdown:PutDown(A.B))
[ occurred(putdown) A — (3 pickup:PickUp(A)) [putdown = pickup] ]

In other words, A is on B if A has been initialized to be on B or as been put down on
B and if it has not yet been picked up. A goal of the form On(A.B) could be satisfied
by a plan that is defined to satisfy INIT On{A,B) and contains no PickUp(A) event, or
contains a PutDown(A.B) event that has not been followed by a PickUp(A) event.!®

Whatever their form, the ipitialization and goal descriptions present the planner
with an initial partial ordering of events - the “beginning” and “end” of a net of actions
— with the possible addition of some initialization axioms. The domain constraints are
then used to fill in that net. An important planning heuristic is the order in which
those constraints are applied.

190f course, a conjunctive goal would simply be satisfied by finding events that satisfy the conjunction
of its component subgoals. Usually this will be the znfon of a sct of events or event patterns.
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One good rule of thumb is to impose prerequisite constraints first. These constraints
automatically insert new required events (or event alternatives) into the ordering.
Other constraints can thien be used to constrain this partial ordering further. To choose
among event alternatives (for example, we might know that event a must be caused by
etther an event b or an event ¢), we might make a random or weighted selection and
allow for later backtracking. Although we may use backtracking, we would also like to
adhere to a least-commitment philosophy. That is, many decisions (for example, event
parameter binding) can be put off until they are forced. SIPE, NONLIN, DEVISER,
and other planners also combine backtracking with least-commitment.

Another planning lieuristic is to use the constraints themselves to help make plan
choices. TFor example, suppose that one of the domain constraints describes the pre-
conditions for event a. Given the choice described above, we could decide between b
and ¢ according to which event makes a’s preconditions true (or untrue). A graphic
user interface to the planner could also be utilized for resolving choices. As a plan is
constructed, it could be presented graphically to the user. At this time, the system
could request user guidance by offering specific plan choices. Such an interface could
also be used to create visual simulations of possible plan executions.

Notice how a planner based on behavioral constraints is really quite distinctive in
its approach. The traditional state-based pattern is usually: goal subdivision, separate
plan construction, and finally, plan integration and critique. In contrast, a behavioral
planner builds plans through direct imposition of constraints on action orderings. Be-
cause these constraints are completely domain-specific and can express a wide range of
properties, they may force earlier and more intelligent pruning of the planning space.
However, such a planning system must also be stronger: it must know how to impose a
constraint automatically, given its definition. We are thus moving much of the tedious
and error-prone work of the domain describer onto the planner itself, One of the major
tasks in our work will be to find a compromise between constraint expressiveness and
efficient implementation. We hope to gain from recent work being done on efficient
planning techniques by Simmons [38] and by Chapman [6].

One promising area for investigation is the question of whether some forms of
constraints can be satisfied better by performing checks (e.g., certain kinds of syn-
chronization) during plan execution. This option would involve development of an
enhanced plan interpreter or executor. For example, if the interpreter included prim-
itives for guarding critical sections (a monitor, say), mutually exclusive regions of a
domain could be protected by having plans invoke synchronization primitives within
the interpreter. One possibility might be to use Manna and Wolper’s [25] algorithm
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(and Stuart’s implementation [41]} for automatically generating a synchronizer from

temporal logic constraints.

A behavioral planning technique may also facilitate plan explanation. In a constraint-
based planner, each relationship imposed between two actions can be attributed to a
specific constraint or set of constraints. In addition, the causal relationships among
actions are embedded in the plan itsell. By associating each relation between events
with the set of constraints that caused that relation to exist, we will effect a method
of explaining the rationale belind a plan.

One of the problems we will confront in developing constraint adherence algorithms
is how to reason about the potentially explosive number of executions of a given partial
order. This problem becomes especially grave when dealing with the possible “pasts” of
a given event, or with the temporal operators O (“henceforth”} and ¢ (“eventually”).
For example, if we assert [0 p (henceforth p must be true}, then we must check that p
is true of every state of every possible execution of the plan. There are several ways
of getting around this problem: retaining global information about a plan between
histories, having knowledge about the invariance properties of certain predicates, and
limiting the form of p to something that can be easily checked. For example, if we have
0O el cbe fore £2, we can simply make sure that el never causes an event of type E2.
In general, we fcel that a judicious choice of constraint paradigms, combined with the
maintenance of global information, will alleviate many implementation problems. The
above-cited work by Simmons and Chapman also attempts to address some of these
problems by applying similar methods.

7 An Example: The Blocks World

In this section we present a GEM specification of a blocks world domain, and show
how the domain constraints can be used to generate a plan for moving blocks.

7.1 Blocks World Specification

The blocks world is made up of a table and two types of objects: passive agents
called blocks and active agents called robots that manipulate blocks. Because they are
passive, no real actions are performed by blocks. In contrast, each robot may perform
two types of actions. An action of the form PickUp(b1) models a robot picking up 2
block bl. PutDown(b1.b2) models the action of placing a block b1 down on top of b2,
where b2 is either another block or TABLE. Robot constraint 1 states that each time a
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robot puts down a block b1, it must have previously picked up that same block. Robot
constraint 2 states that each PickUp action (except the first) must be preceded by some
corresponding PutDown action. The combined effect of these two constraints is that
each robot’s actions must alternate between PickUp and PutDown actions, starting
with a PickUp action. Thus, a robot cannot pick up two blocks at once, nor can it
deposit an object twice, unless there is an intervening PickUp action.

TABLE = ELEMENT Block = ELEMENT TYPE
END TABLE END Block

Robot = ELEMENT TYPE
EVENTS
PickUp(b1:Block)
PutDown(b1:Block. b2:{Block, TABLE})
CONSTRAINTS
1) PickUp(b1) — PutDown(b1,b2)

2)i > 1 > PutDown — PickUp’
END Robot

Finailly, we model the entire domain as a group called BlocksWorld, consisting of
TABLE, a set of Block elements, and Robot elements. The first constraint precludes
a block from being manipulated by more than one robot at a time. It does this by
imposing a mutual exclusion constraint on uses of the block, wherein block usage
encompasses the period between the time a block is picked up and the time it is
deposited. In single-agent worlds, this constraint would be unnecessary.

BlocksWorld = GROUP TYPE (TABLE. {b}:SET OF Block. {r}:SET OF
Robot)
CONSTRAINTS
1) (¥ b:Block) O - (3 pickup1.pickup2:PickUp(b). pickupl#pickup2)
[pickup1 cbefore PutDown A pickup2 cbefore PutDown]
2) (V¥ pickup(b):PickUp) [PreCondition(pickup(b). Clear(b}}] A
(¥ putdown(b2.b):PutDown} [PreCondition{putdown(b2,b). Clear(b)}]
END BlocksWorld

The second blocks world constraint requires that, if a robot picks up a block b or
puts down another block on top of a block b, then block b must have been “clear” in
the preceding history. In other words, there can be no obstructions that would prevent
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Figure 3: Initial and Goal Configuration of Blocks A, B and C

a robot from carrying out a PickUp or PutDown action. This constraint is actually a
perfect example of one that might be best defined using state-based methods - that
is, it could be defined by delineating a set of Add(Clear{b)) and Delete(Clear(b}) event
types. For now however, we opt for the derived-formula definition of the Clear predicate
given below. This definition states that b is “clear” if it is the table (the table is always
considered to be clear) or, if b is a block, it is not currently in a robot’s hand (all actions
of form PickUp(b.b1) bave been followed by a corresponding PutDown action) and there
is no block on top of b (all actions of form PutDown(b2.b) or initializations of form
INIT On(b2.b) have been followed by a corresponding PickUp(b) action).

Clear(b) =
(b = TABLE) v

[ (¥ pickup:PickUp(b))[occurred(pickup) O
(3 putdown:PutDown)[pickup ~ putdown]] A

(3 b2)[INIT On(b2.b)} > (3 pickup:PickUp(b))[occurred(pickup)] A

(V putdown:PutDown(b2.b))[occurred(putdown) >
(3 pickup:PickUp(b2))[putdown = pickup]] ]

7.2 Generating Plans for the Blocks World

Given this description of the blocks world, we now consider the problem of generating
a plan for moving a set of blocks from the initial configuration to the goal configuration
shown in Figure 3. We begin by constructing a plan for a single robot R.
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Suppose we describe the initial configuration by a set of three initialization asser-

tions:

INIT On(C,TABLE)
INIT On(B,A)
INIT On(A,TABLE)

The goal is described by three history formulas, On(A,B), On(B,C), and On(C,TABLE),
where On(x,y) is defined as in Section 6. These initial and goal configurations yield
a preliminary plan network of the following form:

INIT On{C,TABLE)
INIT On(B,A) R.putdown{B,C)
INIT On{A,TABLE) R.putdown{A,B)

By applying Robot Constraint 1 we get a plan of form:

INIT On{C,TABLE)
INIT On{(B,A) R.pickup{B) ~+ R.putdown{B,C)
INIT On{A,TABLE) R.pickup{A) ~ R.putdown{A,B)

Next, we apply Robot Constraint 2. Since R.pickup{B) must precede R.pickup({A)
or vice versa, at least one of these events cannot be the first action of robot R. Thus,
one of them must be caused by a Putdown event. We could add a new Putdown
event for this purpose or use an existing one. The latter alternative is also supported
by BlocksWorld Constraint 1, which aflirms that the robot cannot be holding both B
and A in the same history. We thus should have either

R.putdown{A,B) ~ R.pickup(B) or
R.putdown({B,C) ~+ R.pickup{A) .

If we check BlocksWorld Constraint 2, the first choice violates the clear precondition
of R.pickup(B). We thus choose the second alternative, yielding

INIT On(C,TABLE)

INIT On{B,A) R.pickup(B) ~ R.putdown(B,C)

INIT On{A,TABLE) R.pickup{A) ~+ R.putdown{A,B)
which is a plan that satisfies all the constraints.

40



Now let’s consider the option of using multiple robots to accomplish our task. Our
initial plan network may utilize two robots, R1 and R2, to satisfy the goals On(B,C)
and On(A,B).

INIT On(C,TABLE)
INIT On(B,A) R1l.putdown(B,C)
INIT On(A,TABLE) R2.putdown(A,B)

As before, we apply Robot Constraint 1, yielding

INIT On(C,TABLE)
INIT On(B,A) Rl.pickup(B) ~ Rl.putdown(B,C)
INIT On(A,TABLE) R2.pickup(A) ~ R2.putdown(A,B)

Robot Constraint 2 is not violated this time; the events R1.pickup(B) and R2.pickup(A)
could both be initial Pickup events for their respective robots. Nor are we violating
BlocksWorld Constraint 1. We are, however, still violating BlocksWorld Constraint 2.
To satisfy the latter, we must be sure that A, B, and C are clear before they are picked

up or covered by another block. To satisfy the clearing of A, B must be picked off A
before A is picked up - i.e,, R1.pickup(B) = R2.pickup(A). If this is satisfied,

it will also automatically assure that A is put down on B after B is picked up (i.e.,
Rl.pickup(B) = R2.putdown(A,B)} and thus B will definitely be clear before
the R1.pickup(B) action is executed.

INIT On(C,TABLE)

INIT On(B,A) R1l.pickup(B) ~+ Rl.putdown(B,C)
Y
INIT On(A,TABLE) R2.pickup(A) ~ R2.putdown(A,B)

Next, we must assure that B is clear when A is put down on it. This clear precondition
is violated when B is in robot R1’s hand. Thus, B must have already been deposited
by robot R1 before robot R2 puts A down on B. This yields a final plan of the form:
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INIT On(C,TABLE)

INIT On(B,A) Rl.pickup(B) ~+ R1l.putdown(B,C)
Y Y
INIT On(A,TABLE) R2.pickup(A) ~+ R2.putdown(A,B)

Note that block A may be picked up at the same time that block B is being placed
on block C.

8 Conclusions

This paper has presented the GEM model and specification language and discussed
how it may be used for the specification of multiagent domains, as well as serve as
a framework for generating plans in those domains. We feel that GEM has much to
offer as a specification tool and that it is significant as a representational meduim,
quite apart from its application to planning. Not only was it specifically designed
to model the complex temporal properties of concurrent environments, but it also
deals explicitly with the representation of causality, simultaneity, and logical/spatial
structure. Much of the power of GEM’s representational capabilities is due to its use
of temporal operators over sequences of histories, which are complete records of past
domain activity and interrelationships.

One of the unique aspects of our model is its emphasis on specifying domain prop-
erties in terms of actions and action interrelationships (i.e. behavioral specification).
Most standard representational schemes describe a domain in terms of a set of state
predicates, while the actions of the domain are viewed as “state transformers.” One of
our goals is to explore the utility and expressiveness of behavioral specification tech-
niques; indeed, past experiences with GEM have been quite positive in this respect
7,7]. However, despite our emphasis on behavioral specification, we also recognize
that state-based specification is often better for describing some kinds of properties.
Thus, we have also presented various options for integrating the use of state predicates
within GEM.

This paper has also offered several initial ideas for the construction of a planner
based on GEM domain descriptions. Given a GEM-based description of a multiagent
domain and a set of initial conditions and goals, plan construction would entail build-
ing a network of partially ordered actions through a process of incremental constraint
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satisfaction. Many standard planning techniques can be used, including those of least-
commitment, backtracking, and protection. Other techniques will also be explored,
including experimentation with constraint ordering and run-time constraint satisfac-
tion (in particular, run-time synchronization). Plan explaration could be facilitated
by associating each action relationship within a plan with the constraint that caused
that relation to be there. Since the causal relationships among actions are already a
natural part of the GEM domain representation, they too can easily be used for plan
explanation purposes.

As regards the computational problems faced in constructing such a planner, we
hope to isolate a powerful but implementable subset of the GEM specification lan-
guage. We anticipate that a set of constrasnt paradigms will be identified and that our
implementation will be geared towards making these particular types of constraints
efficicnt to enforce.

Finally, a very long-term goal of this research is the utilization of computer graphics
as 2 medium for user interaction with a planning system. Pictures are an invaluable
way of explaining complex activity to humans - especially concurrent activity. One
of the advantages of a behavioral approach to planning is that behavioral patterns
are casily visualized. There are several ways in which a graphic user interface to a
planning system could be used. Potential applications include visualizing and helping
to guide the planning process, visually simulating and testing plan executions, and
plan-execution monitoring. A graphic user interface could also be used for building
the domain specification itself. Indeed, many of the GEM specifications constructed
by us in the past began as graphic depictions of elements, groups, and events.
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A GEM Specification Language Syntax

The following syntax describes a subset of the GEM specification language, with the
omission of the actual syntax for constraints. (Such constraints simply follow the usual
syntax for well-formed first-order temporal logic formulas composed of the predicates
on histories described in Section 4.) In the syntax description below, square brackets [z]
are used to indicate the optional inclusion of z, the Kleene star applied to parenthesized
expressions {z)# indicates zero or more repetitions of z, and (z)+ indicates one or more
repetitions of x. Use of the vertical bar (z|y|z) indicates the choice of one of a set of
alternatives, in this case = or y or z. Quotation marks are used to distinguish uses
of the delimiters (, ), [, 1, +, * as part of the GEM specification language from
uses of these delimiters as BNF notation (BNY delimiters are unquoted).

<specification> ::= (<element specification> | <group specification>)#

= <element>
1:= <element type>

= <refined element>
<refined element type>

<element specification>

i

<group specification> <group>
<group type>
<refined group>

<refined group type>

<element> ::= <element name> = ELEMENT
[ EVENTS
{<event type>)}+ ]
[ CONSTRAINTS
(<constraint>)+ ]
END <element name>

<element name> = <base element type name> ELEMENT

<element type> ::=
<element type name>[ "(" <param description list> ")" ] = ELEMENT TYPE
[ EVENTS
(<event type>)+ ]
[ CONSTRAINTS
(<constraint>)+ ]
END <element type name>

<event type> ::= <event type name>{ "(" <param description list> ")" ]

<param description list> ::= <param description>(, <param description>)*
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<param description> ::

<param name>:<GEM type>

<GEM type> ::= <specification defined type> | <basic type>

<specification defined type> ::

= <event type name>
::= <element type name>
= <group type name>

<basic type> ::= GROUP | ELEMENT | EVENT | VALUE | <conventional type>

<conventional type> :

INTEGER | BOOLEAN | REAL | STRING

<group> ::= <group name> = GROUP "(" <element group list> ")"

[ PORTS "(" <event class list> ")" ]

[ CONSTRAINTS
(<constraint>)+ ]
END <group name>

::= <group name> =
<base group type name> GROUP "(" <element group list> ")"

<element group list>

<element or group> ::

<group type> ::=

::= <element or group>(, <element or group>)*

<element name> | <group name>

<group type name>["(" <param description list> ")"] =

GROUP TYPE "(" <group param list> ")"

[ PORTS "(" <event class list> ™)" ]

[ CONSTRAINTS

(<constraint>}+ ]

END <group type name>

<group param list> ::

<group param> ::

<group param type> ::

<group param>(, <group param>)*

= <param name>:<group param type>
::= {<param name>}: SET OF <group param type>

<single group param type>
{<single group param type>
(, <single group param type>)* }

<single group param type> ::= <element type name> | <group type name>
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<event class list> ::= <event class>(, <event class>}#*

<event class> ::= <simple event class>
: <element name>.<simple event class>
<element type name>.<simple event class>
<group name>.<element name>.<simple event class>
= <group name>.<element type name>.<simple event class>
= <group type name>.<element type name>.<simple event class>

(L

<simple event class> ::= <event type name>
[ <occurrence number> ]
["(" <parameter value list> "}" ]

<pccurrence number> ::= <constant>
<param value list> ::= <param value>{(, <param value>)*
<param value> ::= <string> | <boolean> | <integer> | <real> | <const> |

<group name> | <element name> | <event instance name> |
<event instance name>.<param name>

<refined element type> ::=
<refined element type name>["("<param description list>")"] =
<base element type name> ELEMENT TYPE
<element differences>

<refined c¢lement> ::= .
<refined element name> = <base element type name> ELEMENT
<element differences>

<refined group type> ::=
<refined group type name>["("<param description list>"}"] =
<base group type name> GROUP TYPE
<group differences>

<refined group> ::=

<refined group name> = <base group type name> GROUP <element group list>
<group differences>
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<element differences> ::= (<constraint difference> |
<name difference> |
<element event difference> )#*

<group differences> ::= ( <constraint difference> |
<name difference> |
<group structure difference> )#

<constraint difference> ::= ADD CONSTRAINT: <constraint>
: DELETE CONSTRAINT: <constraint>
REPLACE CONSTRAINT: <constraint> WITH <constraint>

<name difference> ::= RENAME: <name> WITH <name>

<element event difference> ::= ADD EVENT: <event type>
::= DELETE EVENT: <event type>
REPLACE EVENT: <event type> WITH <event type>

ADD TO GROUP: <group param>

DELETE FROM GROUP: <group param>

REPLACE INSIDE GROUP: <group param> WITH

<group param>

ADD PORT: "(" <event class list> ")"

DELETE PORT: "“(" <event class list> ")"

REPLACE PORT: "(" <event class list>» ")"
WITH "(* <event class list> ")*"

<group structure difference>::

<element name> ::= <string>

<element type name> ::= <string>

<refined element type name> ::= <string>

<refined element name> ::= <string>

<group name> ::= <string>

<group type name> ::= <string>

<refined group type name> ::= <string>

<refined group name> ::= <string>

<event type name> ::= <string>

<param name> ;:= <string>

<constant> ::= <string>

<name> ::= <string>

<event instance name> ::= <string>

<base element type name> ::= <element type name>["(" <param value list> ")"]
<base group type name> ::= <group type name>["("™ <param value list> ")"]
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